IAB/IESG Recommendations on IPv6 Address Allocation

Bob Hinden 14 September 2000 RIPE Meeting (Brian Carpenter, 3 Oct., ARIN)

OVERVIEW

- Introduction
- Background
- Recommendation
- Address Space Conservation
- Multihoming
- Summary

INTRODUCTION

- RIRs asked the IETF for advice on IPv6 prefix assignment
 - Service Providers
 - Edge Networks
- IPng working group discussed issue July 2000
- IPv6 Directorate developed recommendation
- IAB & IESG Reviewed and Approved

PREVIOUS DISCUSSION

- Discussion at Adelaide IETF
- Suggestion to allocate /56 prefixes instead of /48 for homes and small businesses
- Subsequent analysis shows significant advantage to uniform /48 allocations

BACKGROUND

- Address allocation is a balance
 - Responsible allocation practices
 - Easy access
- Allocation practices have significant effect on deployment and usage
- Important for the deployment of IPv6 to make allocations easy and not slow deployment

IPv6 UNICAST ADDRESS

3	13	8	24	16	64
FP	TLA	R	NLA*	SLA*	INTERFACE ID

INITIAL ALLOCATIONS

3	13	13	6	13	16	64
FP	TLA	Sub-	R	NLA	SLA	INTERFACE ID
		TLA				

 Initial "show start" allocations out of FP = 001 TLA = 0x0001

IPv6 RENUMBERING

- Renumbering in IPv6 is considerably improved (from IPv4)
- However
 - Not invisible, painless, or automatic
- Renumbering still not free

IPng W.G. RECOMMENDATION

- Defined in RFC2374 & RFC2450
- Subnetted sites should be allocated /48 prefix
 - Allows 2¹⁶ subnets
 - Large enough for almost all sites
- Issue is size of prefix for smaller sites
 - /64 for single subnet sites?
 - Single hosts? Mobile phone?
 - Temporary vs. permanent usage?
 - How to judge usage?

RECOMMENDATION

- Recommend /48 fixed boundary for all subscribers
- Except
 - Very large subscribers (receive multiple /48 allocations, i.e. /47 or /46...)
 - Transient nodes (receive /64)
 - No interest in subnetting (receive /64)
- Consistent with responsible stewardship of the IPv6 Address space

JUSTIFICATION

- Fixed boundary guarantees change of ISP does not require restructuring of subnets
- Facilitates straightforward renumbering
- Compatible w/ all known IPv6 Multihoming proposals
- Allows easy growth of subscriber networks

 Eliminates need to go back to ISP for more addresses

JUSTIFICATION (2)

- Removes burden on ISPs and RIRs to judge customers' need for space
 - ISPs do not need to ask for details of customer networks
 - ISPs and RIRs do not have to judge rates of customer address consumption
 - Makes RIR operations more efficient
- Subscriber address space no longer scarce resource
 - Removes incentive for IPv6/IPv6 NAT

JUSTIFICATION (3)

- Allows site to maintain single reverse-DNS zone covering all prefixes
 - Same subnetting structure allows same zone file for all prefixes
 - Using RFC2874, reverse mapping data can be used in "forward" (named-keyed) zone

ADVANTAGES OF /48

 Keeps open the possibility of GSE (a.k.a. 8+8) proposal for separating locators and identifiers

 IRTF Name Space Research Group is looking at this general area

- Maintains 1 to 1 mapping of subnets with Site local prefix (fec0::/48)
- Maintains 1 to 1 mapping of subnets with 6to4 proposal

CONVERVATION OF ADDRESS SPACE

- Does giving a /48 to all subscribers waste too much IPv6 address space?
- No, the IPv6 address space is very large
 - Aggregatable Unicast Address format supports 45 variable bits
 - 2⁴⁵ or 35 Trillion
 - Assuming one /48 prefix per person
 - Utilization is 0.03%

ANALYSIS

- RFC1715 defines an "H" ratio based on address space assignment in various networks
- Applied to 45 bit address space and world population of 10.7 billion in 2050*

 $H = \log^{10} (1.07 * 10^{10}) / 45 = 0.22$

- Less than the "H" ratio of
 - US Telephone numbers (0.24), France Telephone numbers (0.26), DECnetIV (0.26), or IPv4 addresses mid 1990 (0.23)

^{*} http://www.popin.org/pop1998/

ANALYSIS (2)

• We are only discussing assignments from Aggregatable Global Unicast Format Prefix (001)

 85% of remaining address space is unassigned

- If in the future our analysis proves to be wrong
 - Our successors have option of imposing more restrictive allocation policies

TRANSIENT USAGE

- Single dialup nodes that prefer transient addresses
 - /64 prefix is OK
- Subscriber who wants static assignment or plans multiple subnets
 - Receive /48 even if dialup

IPv6 MULTIHOMING

- IPv6 multihoming is work in progress
- IPv4 multihoming techniques can be applied
 - One prefix advertised by multiple ISPs
 - Routing table grows with number of multihomed subscribers
- IPng working group looking at other approaches

MULTIHOMING APPROACHES

- IPv4 Style
 - How to scale backbone routing?
- Host Mechanisms
 - Site receives a prefix from each ISP
 - Prefixes carried by site routing
 - Nodes select addresses to use
 - How to pick best Source and Destination addresses?
- Border Router Mechanisms
 - Tunneling
 - Route injection

IAB/IESG Recommendations on IPv6 Address Allocations

MULTIHOMING FUTURES?

- Other approaches?
- Better ideas?

SUMMARY

- Careful stewardship of IPv6 address space is important
- Allocation of /48 prefixes has many advantages
- Allocation of /48 prefixes to all subscribers is consistent with careful stewardship
 - Size of IPv6 address space supports this approach

IP Addressing guidelines for GPRS Network Infrastructure

Jarnail Malra, BT Cellnet UK on behalf of GSM Association IREG GPRSWP *RIR introduction to GPRS Mobile Operator network addressing guideline document ARIN VI : 2-4 October 2000*

Contents

- Aims of presentation
- GSM Association overview
- Story so far.....
- GPRS overview
 - What is GPRS?
 - What is GPRS roaming?
 - Scale of IP address requirements

Guideline document overview

- Why is document required?
- Document objectives
- What does it mean to Internet Registries?

3rd Oct 2000 lss 1.1; 007_0065

GPRS infrastructure addressing - J Malra

Slide 24

Aims

Introduce to RIR members

- GPRS network infrastructure guideline document for: -
 - IPv4 addressing
 - Autonomous System Numbering (ASN)
- For use by GPRS mobile network operators
 - Not applicable to Mobile terminals
- Seek acceptance of guidelines by all RIRs
 - Common 'policy' document for use by all Mobile network operators world-wide when requesting Registered addresses and Public ASNs

Business as usual' for Internet GPRS infrastructure addressing - J Malra

Slide 25

Scope

In scope

- GPRS network infrastructure
 - IPv4 addressing
 - Autonomous System Numbering

Out of scope

- IP addressing for Mobile Terminals
- IPv6
- 3rd Generation mobile networks

GSM Association overview

Guideline document produced by GSM-A IREG GPRSWP

- GSM Association
 - Represents interests of over 450 GSM: network operators, manufactures, regulators and admin bodies
 - Members provide service to more than 330m customers (June-2000) across the world
 - Responsible for development, deployment and evolution of GSM system
- IREG International Roaming Experts group
 - A working group of the GSM-A

3rd Oct 2000 GR.R.S.W.B5- GPRSR.Winrkingtureaddressing E Galra

Slide 27

Story so far.....

Nov '99-Feb '00

 BT Cellnet identified initial requirements for an IP addressing policy to GSM-A

Feb '00 - RIPE 35

- GSM-A submitted initial proposal to RIPE NCC for discussion/assistance
- RIPE suggested a Task force be set up to investigate matter

April '00 - IP Addressing Working Party meeting

- Members attended from Mobile networks and Internet communities
- Objective: clarify/understand/define requirements

May '00 - RIPE 36

- Task Force Working Party presented its findings
- Findings agreed by RIPE

Story so far.....

19 July '00 - Milestone

- Joint GSM-A/RIPE NCC press release issued
 - Public IPv4 addresses can be used in parts of GPRS network infrastructure
 - Existing IP address allocation procedures apply

Today

- Working with other RIRs to get their similar acceptance/endorsement of guideline document
 - ARIN VI meeting: 2-4 Oct 2000
 - APNIC meeting: 25-27 Oct 2000

What is GPRS?

- General Packet Radio Service (GPRS)
- Enhancement of existing GSM (Digital) circuit switched voice-based network
- TCP/IP-based: allows data packets to be conveyed across the mobile network using packet switching
- "Always on" / always connected
 - After initial 'log-on' User is constantly connected to end service
 - Network resources only used when information ready to be exchanged

GPRS Network

GPRS Network

GPRS phone

- E.g. GPRS WAP phone; connected to PC terminal; GPRS PDA device (e.g. PSION organiser)
- Requires IP Addresses out of scope/to be addressed separately

GPRS Infrastructure (Radio/Core networks)

- Radio Network
 - Existing GSM radio network infrastructure with added GPRS functionality
 - No IP addresses required

GPRS Network

- Core Network
 - SGSN Serving GPRS Support Node
 - Serves mobile terminal over radio interface
 - IP addresses required
 - GGSN Gateway GPRS Support Node
 - Gateway form Operator's GPRS network to land-based IP networks, e.g. Internet, corporate networks
 - IP addresses required
 - DNS Domain Name Service Server
 - Logical name/IP address resolution
 - IP addresses required
 - Border Gateway
 - Gateway access to other GPRS FNOs via

3rd Oct 2000 Iss 1.1; GPoRS roaning files Ckloonessing - J Malra Slide 33

What is GPRS roaming?

- Allows subscriber to access GPRS services when 'roaming' in another Foreign Network Operator's (FNO) network, e.g.
 - Access to local internet from FNO network
 - Access to a subscriber's corporate site/services in Home network

 Roaming services supported will be defined in roaming agreement between two operators

3rd Oct 2000 lss 1.1; 007_0065 GPRS infrastructure addressing - J Malra Slide 34

GPRS Roaming Network

3rd Oct 2000 lss 1.1; 007_0065

GPRS infrastructure addressing - J Malra

GPRS Roaming Network Requirements

- Inter-Operator (roaming) IP backbone interconnects IP backbones of each operator
- All GPRS core network elements must be uniquely addressed for roaming interaction
- Addressing activity must be coordinated on a global basis
- Possible future convergence with Internet

ard Boegistered addressing amost practical 36

GPRS roaming services - example

- UK sub roaming in USA, services available: -
 - 1. Access to Internet via Visited USA GPRS operator
 - 2. Access to GPRS services via Home UK operator across the roaming backbone, e.g. to access subscriber's corporate site
- DNS look-up system
 - Resolves Access Point Name (logical name) to IP address, e.g.
 - Internet apn = "internet"
 - XYZ corporate's apn = "xyz.co.uk"

 - Local DNS per operator network
 Root DNS in Roaming backbone (e.g. Global IP carriers)
- GPRS Tunnel established between visited SGSN and
 - Visited GGSN for Local access to Internet, or
 - Home GGSN for access to networks/services in Home operator's network via inter-operator roaming backbone
 - Uses GPRS Tunnelling protocol (ETSI standard not IETF)

Addressing scheme requirements

- Addressing scheme options
 - Registered/Public or Private addresses
- Common addressing scheme required for all mobile operators (globally)
- Unique addressing for GPRS elements
- Not possible to use Network Address Translation (NAT)
 - NAT does not support GPRS Tunnelling Protocol (ETSI)

3rd pot 2000 1; 1000 to Vet September tee a dows i G PARS

Addressing scheme options

Private addresses

- Not scalable
 - Limited range of private addresses
 - Only one /8 and few /16s
- Not addressable via Internet
- Unique addressing cannot be guaranteed

Registered/Public addresses

- Scalable
- Addressable via Internet
- Unique addressing can be guaranteed
- Can use existing IR admin procedures

Scale of IP address requirements

- Total number of IP address for global GPRS network infrastructure dependencies: -
 - Number of GPRS operators
 - 400 potential GPRS operators today
 - No. of addressable items per operator, variable:-
 - Size of operator's network
 - System supplier (one Supplier's system may use less/more IP addresses than another)
 - E.g. over five-year period: BT Cellnet requires approx. 1000 IP addresses whilst Telfort requires only 255.

Expect 280k Total IP addresses over five year period (assuming 400 GPRS operators x 700 addresses per operator = 280k

Guideline doc - Why required?

- Initial uncertainty if all IRs would accept requests for Registered addresses from all mobile operators
 - Requirement for Registered addresses identified for GPRS infrastructure
 - But, global GPRS network might be considered as a large 'Private' network, i.e. independent of Internet

Guideline doc - Why required?

- Hence, requirement to establish common understanding for addressing policy to request registered addresses
 - Agreed by Internet Registries and GSM-A
 - Used by any mobile network operator on a global basis

Document objectives

For use by both Mobile operators & IRs

Operators

- Overview of Internet Registry System
- IPv4 addressing and ASN implementation guidelines for GPRS infrastructure
 - Promotes conservative use of address space
 - Registered addresses for GPRS network elements
 - Private addresses for other parts of network
- Identification of IPv4/ASN request procedures
 - Registered IPv4 addresses from IRs
 - Private ASN from GSM-A
 - Public ASN from IR
- Note: Guideline document does not automatically 3rd Oct 2000 guarantees registered addresses passing anapperatoria 43

Document objectives

Internet Registries

- Visibility/better understanding of requirements when mobile operator make requests from IRs for: -
 - Registered addresses
 - Public ASNs
- Business as usual
 - Existing IR administration processes will apply

Summary

- Guideline document produced in conjunction with RIRs and GSM-A
- Guidelines for Mobile operators on conservative use and requesting: -
 - IPv4 addresses and Public ASN from IRs
 - Private ASN from GSM-A
- Business as usual for IRs
- Acceptance/approval of guideline document requested from all RIRs

3rd Oct 2000 Iss 1.1; 007_0065

Close

Thank you

..... Questions?

American Registry for Internet Numbers

Background

- ARIN maintains network records for all legacy space (Class A's, B's, C's)
- Includes record holders outside ARIN's region
- Registrations from outside ARIN's region to be transferred to the appropriate regional registry

Benefits

- Record holders deal with only one RIR
- Eliminates POC maintenance in multiple DB's
- Keeps records in like time zones
- Reduces language barriers
 - National IP Registries (NIRs) available at RIPE
 NCC and APNIC

Necessity for Sharing Zones

- Legacy networks not contiguous by region
- Top-level root zone in-addr will have separate DNS entries for each /8
- Blocks with legacy networks in multiple regions must be shared
- RIR having majority of network space for a /8 will have primary responsibility
- Other RIRs must be able to provide updates to zones maintained by other registry

Legacy Network Transfers -Preliminary Statistics

Class A (0.0.0.0 - 127.255.255.255)

- (2) to APNIC
- (21) to ARIN
 - (5) to RIPE NCC
- (24) to corporate/institution name servers
- (76) Reserved to IANA

Legacy Network Transfers -Preliminary Statistics

Zone Splits - Class B (128.0.0.0 - 191.255.255.255)

- (4) ARIN
- (3) RIPE NCC
- (1) APNIC
- (35) Shared ARIN Primary
 - (2) Shared RIPE NCC Primary
 - (2) Shared APNIC Primary
- (17) Reserved

Legacy Network Transfers -Preliminary Statistics

Zone Splits - Class C (192.0.0.0 - 223.255.255.255)

- (4) APNIC
- (6) RIPE NCC
- (6) ARIN
- (6) Reserved
- (10) Shared (ARIN Primary for All)

RIR Coordination Efforts

- Planning and preparation
 - Sample dump was provided in April
 - Candidate list of transfer networks provided 08/22
 - Companion dump of all network data provided 08/23
- Mechanism for updating shared zones
 - Preliminary agreement to use dynamic updates (RFC 2136) and TSIG (RFC 2845)
 - Independent testing by RIRs
- Mechanism to reproduce a shared zone file
- Interface testing

Next Steps

- ARIN, RIPE NCC and APNIC integration testing
- Notify holders of the networks to be transferred
- Cut-over: target date 1Q2001-2Q2001

Preliminary Numbers

- Total ARIN network records 455,149
- To transfer to RIPE NCC 8,406
 (1.85%)
- To transfer to APNIC 2,352 (0.05%)

American Registry for Internet Numbers

Information Provided by Other Registries

- IPv4 Network Registration Data
- IPv6 Network Registration Data
- ASN Registration Data
- Maintainer Data
- PGP Key Data
- Various Routing Data
- RIPE NCC ftp://ftp.ripe.net/ripe/dbase/
- APNIC ftp://ftp.apnic.net/pub/apnic/dbase/data/

2000 WHOIS Number of Queries

Percentage of Queries from Top Ten IP Addresses

ARIN VI

Virginia

Size of ARIN's database

- 182 MB for a sample RPSL-like format
- 30 MB compressed

Should ARIN consider making its database available?

- PROs?
- CONs?
- Privacy Concerns?
 - Would not include POC data

American Registry for Internet Numbers