veri on

2006-2: Micro-allocations for Internal Infrastructure

Jason Schiller schiller@uu.net Chris Morrow chris@uu.net

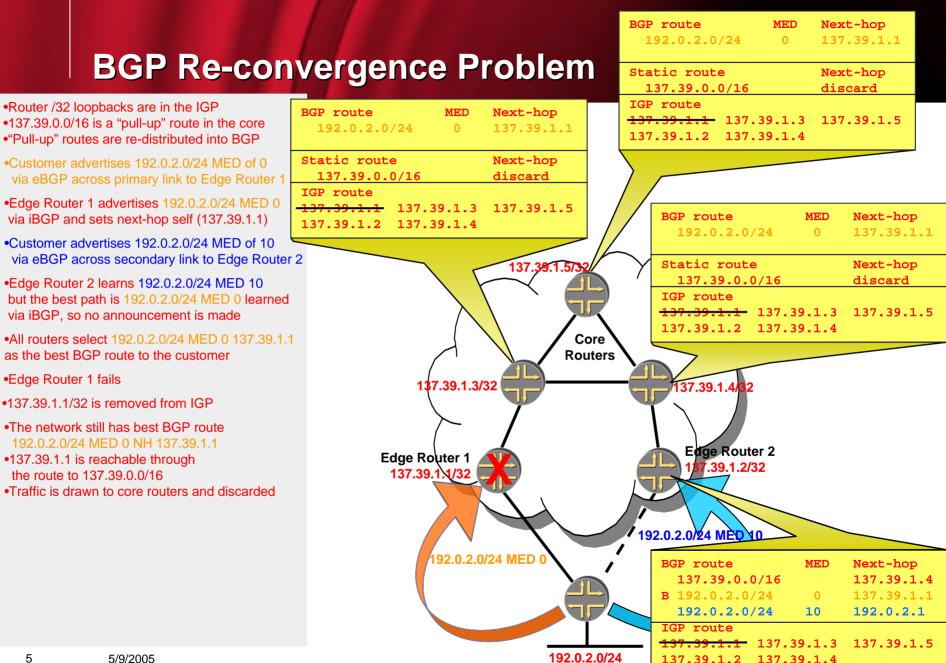
Overview

- 2006-2 to allow for a small additional noncontiguous IPv6 allocation for internal infrastructure in addition to pre-existing IPv6 Aggregate
- Remove BGP convergence issue

-3 min black-holing

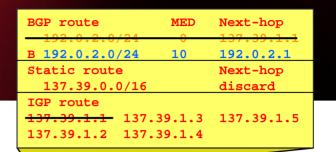
Address security considerations

BGP Re-convergence Problem


- If a route to a destination has a protocol nexthop that is reachable through a pull-up or less specific route, then the route to that destination will never be invalidated due to next-hop unreachability
- Must wait for the iBGP sessions with the failed edge device to time out (up to 3 min hold timer)
- If your routing table has a less specific route for your BGP protocol Next-hops then you have this problem

BGP Re-convergence Problem

- Take a multi-homed customer with prefix 192.0.2.0/24 connected to two different ISP edge routers (edge router 1 and edge router 2)
- Assume the connection to edge router 1 is a primary link with an eBGP announcement of 192.0.2.0/24 with a MED of 0
- Assume the connection to edge router 2 is a secondary link with an eBGP announcement of 192.0.2.0/24 with a MED of 10
- Assume both edge routers set next-hop self
- Assume that there is a "pull-up" or aggregate route that is less specific than the edge routers' loopback IP address



BGP Re-convergence Problem

•Router /32 loopbacks are in the IGP •137.39.0.0/16 is a "pull-up" route in the core •"Pull-up" routes are re-distributed into BGP

- •Customer advertises 192.0.2.0/24 MED of 0 via eBGP across primary link to Edge Router 1
- •Edge Router 1 advertises 192.0.2.0/24 MED 0 via iBGP and sets next-hop self (137.39.1.1)
- •Customer advertises 192.0.2.0/24 MED of 10 via eBGP across secondary link to Edge Router 2
- •Edge Router 2 learns 192.0.2.0/24 MED 10 but the best path is 192.0.2.0/24 MED 0 learned via iBGP, so no announcement is made
- •All routers select 192.0.2.0/24 MED 0 137.39.1.1 as the best BGP route to the customer
- •Edge Router 1 fails
- •137.39.1.1/32 is removed from IGP
- •The network still has best BGP route 192.0.2.0/24 MED 0 NH 137.39.1.1
- •137.39.1.1 is reachable through the route to 137.39.0.0/16
- •Traffic is drawn to core routers and discarded
- •After 3 mins the iBGP sessions with Edge Router 1 time out •Route for 192.0.2.0/24 MED 0 is retracted
- •Edge Router 2 route for 192.0.2.0/24 MED 10 is now best. It advertises 192.0.2.0/24 MED 10 via iBGP and sets next-hop self (137.39.1.2) •Traffic is forwarded to CPE across secondary link

BGP route	MED	Next-hop
	24 0	137.39.1.1
в 192.0.2.0/	24 10	192.0.2.1
Static route		Next-hop
137.39.0.0	/16	discard
IGP route		
-137.39.1.1	137.39.1.3	137.39.1.5
137.39.1.2	137.39.1.4	

39.0.0/16 1te	discard				
1.1 137.39.1.3 1.2 137.39.1.4	137.39.1.5		BGP route 	MED 0	Next-hop 137.39.1.1
	137.39.1.5/39	\frown	B 192.0.2.0/24 Static route 137.39.0.0/16	10	192.0.2.1 Next-hop discard
		Pre	IGP route 137.39.1.1 137.	39.1.3 39.1.4	
137.39.1.3/	Rou	uters	137.39.1.4/32		
Edge Router 1 137.39.1.1/32			Edge Router 2 187.39.1.2/32		
		119	2.0.2.0/24 MED 10		
192.0.2.0	/24 MED 0	í	BGP route 137.39.0.0/16	MED	Next-hop 137.39.1.4
	5		192.0.2.0/24 B 192.0.2.0/24	0 10	137.39.1.1 192.0.2.1
	192.0.	2.0/24	IGP route 137.39.1.1 137. 137.39.1.2 137.	39.1.3 39.1.4	137.39.1.5

BGP Re-con

•BGP next-hops are not aggregated •The aggregate of the BGP next-hops are not announced to the Internet

•Router /32 loopbacks are in the IGP •137.39.0.0/16 is a "pull-up" route in the core •"Pull-up" routes are re-distributed into BGP

•Customer advertises 192.0.2.0/24 MED of 0 via eBGP across primary link to Edge Router 1

•Edge Router 1 advertises 192.0.2.0/24 MED 0 via iBGP and sets next-hop self (157.130.1.1)

•Customer advertises 192.0.2.0/24 MED of 10 via eBGP across secondary link to Edge Router

•Edge Router 2 learns 192.0.2.0/24 MED 10 but the best path is 192.0.2.0/24 MED 0 learned via iBGP, so no announcement is made

•All routers select 192.0.2.0/24 MED 0 157.130.1. as the best BGP route to the customer

•Edge Router 1 fails

•157.130.1.1/32 is removed from IGP

•The best BGP route 192.0.2.0/24 MED 0 has an unreachable next-hop (157.130.1.1) and is invalidated

•Edge Router 2 route for 192.0.2.0/24 MED 10 is now best. It advertises 192.0.2.0/24 MED 10 via iBGP and sets next-hop self (157.130.1.2) •Traffic is forwarded to CPE across secondary link

vergence	9 50	olution	S		tic route 37.39.0.0/16		t-hop scard
BGP route <u>192.0.2.0/24</u> B <u>192.0.2.0/24</u> Static route 137.39.0.0/16 IGP route	MED 0 10	Next-hop 157.130.1.1 157.130.1.2 Next-hop discard	-1	57	route .130.1.1 157.130.3 .130.1.2 157.130.3		2.130.1.5
-157.130.1.1 157.1 157.130.1.2 157.1		137.130.1.5			BGP route	MED	Next-hop
	F	157.130.1.5/3/		Y	B 192.0.2.0/24 Static route 137.39.0.0/16	10	157.130.1.2 Next-hop discard
		Corr	e		IGP route 157.130.1.1 157. 157.130.1.2 157.		
157	∕	Route			157.130.1.4/32		
.1 Edge Ro 157.130.1					Edge Router 2 157.130.1.2/32		
1	92.0.2.0/	24 MED 0	1	192	BGP route 137.39.0.0/16	MED	Next-hop 157.130.1.4
k					B 192.0.2.0/24 B 192.0.2.0/24 IGP route	0 10	157.130.1.1 192.0.2.1

192.0.2.0/24

BGP route

B 192.0.2.0/24

MED

10

Next-hop

157.130.1.2

157.130.1.1 157.130.1.3 157.130.1.5

157.130.1.2 157.130.1.4

Solution Considerations and IPv6

- BGP re-convergence solution required non-aggregated prefixes for BGP next-hops
- ARIN policy provides for only a single IPv6 block
- Aggregating a portion of that block either (ex. /28)
 - Creates many prefixes (/29, /30, /31 and a /32 routed on the Internet)
 - Wastes half of the space (/29 aggregated and routed on the Internet)
- Both approaches add to the global routing table, and do not uphold the principle that IPv6 address aggregation is important for IPv6 stewardship

Security Considerations

- Non routed internal only addresses can be used for internal only services
 - iBGP
 - SNMP
 - Radius / TACACS
 - OOB management
- Two tiered approach to network security
 - Can reduce many attacks to internal infrastructure in control plane by not routing the internal address
 - Additional forwarding filters can be easily constructed by the uniqueness of internal only address block

Private Address Considerations

- Private addresses in traceroutes across the public Internet may create confusion
- If routers source ICMP messages with private addresses, and there is wide spread packet filtering of private addresses, then additional problems and confusion may result
- For reverse DNS to work for private addresses requires split plane DNS and hijacking of IANA's authority of the reverse zones

Policy Language Considerations from PPML

- Remove IPv6 references to NRPM 4.4
- Remove references that internal infrastructure MUST NOT be routed on the Internet as ARIN does not set routing policy
- Strengthen references that internal infrastructure MUST NOT be routed on the Internet and the space will be revoked if it is
- Change section 6.10.2 to reflect only root DNS servers need golden space, and possibly anycast
- Add section 6.10.4 discussing RIR and IANA microallocations
- Require each type of micro-allocation to have its own unique block

